
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, NOVEMBER 2023 1

A Greedy Algorithm for the Nurse Rostering
Problem with Extra-Shifts
Ingrid Schmitdinger Vieira, Alexandre Checoli Choueiri

Abstract—The Nurse Rostering Problem (NRP) concerns the
complex task of scheduling nurses’ shifts in hospitals, taking
into account many constraints and restrictions. The challenge
of manually creating these schedules is considerable due to the
multitude of scenarios and variables involved. In this paper we
deal with a special variant of the NRP, where nurses are allowed
to perform extra-shifts in order to fulfill minimal staff demands.
We propose two variants of a pseudo-greedy algorithm to tackle
the problem, with an extra component of randomness. This
component implies that different runs output different solutions,
giving an iterative dimension to the classical greedy template.
Computational experiments on artificially created instances in-
dicates that the algorithm is a viable option to be used on
hospitals, providing its low total running times and fast solution
convergence.

Index Terms—Hospitals, work shifts, optimization, meta-
heuristics.

I. INTRODUCTION

HOSPITALS require a working schedule for their nurses,
and this schedule has a significant impact on the quality

of health services provided. Although the schedule can be
created manually, it is a challenging and complex task because
several constraints need to be considered. These restrictions
include the fact that hospitals operate continuously non-stop,
the requirement that each nurse have a minimum number of
days off, and other practical restrictions. These constraints can
conflict with each other, making it even more challenging to
create a workable schedule [7].

Creating a schedule usually takes a long time and changes
can occur due to unexpected events such as health issues.
The complexity and importance of this problem have attracted
the attention of the combinatorial optimization scientific com-
munity. Due to the limited resources and investments of
the Brazilian public sector, most hospitals manually generate
personnel rosters. This paper seeks to connect real-world chal-
lenges with actionable solutions, introducing two algorithms
designed to address the unique needs of a hospital setting. In
this research, a specific hospital’s characteristics serve as a
reference point, and the project offers an effective strategy for
enhancing nurse scheduling efficiency.

The paper is structured as follows: It begins with a Literature
Review, showcasing a range of studies in this field and
highlighting common constraints noted in similar research.
Section III details the Problem Description and introduces

This paper was produced by the IEEE Publication Technology Group. They
are in Piscataway, NJ.

Manuscript received November 16, 2023; revised November 16, 2023.

the Greedy Algorithm, including examples and pseudocodes.
This section also explains the primary data structures and two
variations of our proposed solution. We discuss the Objective
Function for this project in the same section. Section IV covers
the solution’s quality, computational times, and two conducted
tests, along with their results and comparative analysis.

II. LITERATURE REVIEW

Nurse Rostering (also referred to as Nurse Scheduling)
is the process of creating a schedule by assigning some
nurses to different shift types, e.g. day, and night, during a
predetermined planning horizon, where many limitations such
as hospital regulations and employee contracts as well as
management and individual preferences are taken into account.
The output of this process is a roster of working shifts for all
the involved nurses, which is expected to result in an increase
of job satisfaction and staff utilisation while reducing stress
and outsourcing costs [8].

When creating an algorithm for nurse rostering problem
in hospitals, constraints can be categorized as either hard or
soft [2]. Hard constraints must be met for the solution to
be feasible, while soft constraints should be met as much
as possible, but the solution can still be feasible if some
are violated. The goal is to develop a personnel plan that
satisfies all hard constraints and as many soft constraints as
possible, with the option to prioritize which soft constraints
are more important [3]. Therefore, below follows the division
of restrictions, common to many NRP problems.

A. Hard Constraints

• Maximum limit on shift types: Each nurse is constrained
by a predefined maximum number of shift types that can
be assigned to them within the planning period.

• Maximum consecutive shifts: Nurses are subject to a
constraint on the maximum number of consecutive shifts
they can work within the planning period.

• Maximum consecutive workdays: A limit is imposed on
the number of consecutive workdays a nurse can have
without a day off.

• Free time between working shifts: There is a requirement
for a specified minimum duration of free time between
consecutive working shifts for each nurse.

• Minimum days off: It is necessary to ensure a minimum
number of days off for a specific period within the
planning horizon.

0000–0000/00$00.00 © 2023 IEEE

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, NOVEMBER 2023 2

• Minimum employee count per shift: A predefined mini-
mum number of employees must be scheduled for each
shift.

• Constraints among groups/types of nurses: Constraints
are applied to regulate the assignment of nurses, such
as prohibiting certain nurses from working together or
specifying that certain nurses must work together based
on their groups or types.

• Staff demand and nurse requirements: Consideration is
given to the requirements and demand for different types
of nurses or staff for each shift, taking into account their
skill levels and categories, with constraints imposed on
the minimum, maximum, or exact number required.

B. Soft Constraints

• Weekend day off: Preference is given to scheduling at
least one day off on weekends, particularly favoring
Sundays.

• Individual nurse preferences: Consideration is given to
the predefined days off or preferences specified by each
nurse, ensuring their preferences or requirements are
taken into account during scheduling.

• Multiple shift assignments: The possibility of assigning a
nurse to more than one shift per day is allowed, although
efforts are made to minimize such occurrences as much
as possible.

Due to the complexity of the problem at hand, it is not
feasible to find a solution using only exact algorithms, due to
the large amount of computational resources required [7]. As
a result, the academic community has turned their attention
to heuristic methods, which, while not offering a guaranteed
optimal result, can provide an approximation, such as the
technique used for the hybrid tabu search [5] and the genetic
algorithms [6], among other studies. Furthermore, matheuris-
tics, which blend the efficiency and adaptability of heuristic
methods with the comprehensive search capabilities of exact
methods, have emerged as a promising solution to tackle the
problem.

Cheang et al. [2] performed an analysis of the existing
literature regarding the modeling and solution methods em-
ployed in NRPs. Their review emphasized the distinctiveness
of the solution approaches and the presence of benchmark
problems for different fundamental models of NRPs. In their
research, Awadallah et al. [4] introduced a hybrid approach
that combines the hill climbing optimization method with an
artificial bee colony. This approach replaces the employed bee
operator with a hill-climbing optimizer. To assess its effec-
tiveness, the proposed method was evaluated by comparing it
to other hybridization approaches previously reported in the
literature.

[3] proposes a novel hybrid algorithm combining the
strengths of Integer Programming (IP) and Variable Neigh-
bourhood Search (VNS) algorithms to design a hybrid method
for solving the NRP. In [9] a local search approach is intro-
duced which is based on a neighborhood operating on partial
solutions completed by means of a greedy procedure so as to

avoid the generation of infeasible solutions. Both a tabu search
procedure and an iterated local search procedure are proposed
in their paper.

Burke et. al. [8] presents the results of developing a branch
and price algorithm and an ejection chain method for nurse
rostering problems. Branch and price is a branch and bound
method in which each node of the branch and bound tree is a
linear programming relaxation which is solved using column
generation. A recent work by Boovarsdóttir [10] adopted a
research perspective by investigating how to deal with the
multi-objective nature of NR problems. The authors present a
general methodology to assist practitioners to set the weights
of the different objective in case of single cost function
expressed as the weighted sum of the multiple constraints
violations.

Jin et al. [11] proposes two types of hybrid metaheuristic
approaches for solving the nurse rostering problem, which are
based on combining harmony search techniques and artificial
immune systems to balance local and global searches and
prevent slow convergence speeds and prematurity. The results
show that they identify better or best known solutions com-
pared to those identified in other studies for most instances.
The results also show that the combination of harmony search
and artificial immune systems is better suited than using single
metaheuristic or other hybridization methods for finding upper-
bound solutions for nurse rostering problems and discrete
optimization problems.

Lin et al. [12] studied a NRP with joint normalized shift and
day-off preference satisfaction, which contained manpower,
day-off, and shift requirements. They used the work shift
weight and day-off weight for each nurse to calculate his or
her shift preferences. Furthermore, Lin et al. [31] developed
a genetic algorithm with immigrant scheme (GAIS) and com-
pared the results of the genetic algorithm (GA), GAIS, and
GA with recovery scheme based on 20 to 100 nurses. Their
results showed that GAIS was better than GA with recovery
scheme.

III. DEVELOPMENT

In this Section we describe the specific variant of the NRP
studied, as well as the algorithm tailored to solve it.

A. Problem Description

This study addresses the Nurse Rostering Problem (NRP)
with a focus on specific constraints that cater to the hospital
where the analysis and study were conducted. Unlike other
studies in the field, the assignment of nurses to the night shift
is not considered in this study, as night shift professionals are
exclusively allocated to the night shift at the aformentioned
hospital, while daytime shift professionals do not work during
the night. Additionally, it is important to highlight that, con-
trary to previous studies where nurse allocations could vary
across different shifts, in this study, once a nurse is assigned
to a specific shift, whether it be morning or afternoon, they
remain in that shift for the entire planning horizon period.

Nurses have the flexibility to carry out their duties in shifts
other than their assigned ones. They are permitted to work

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, NOVEMBER 2023 3

overtime, which, in our situation, is not measured by time but
by additional shifts. Therefore, if a nurse is assigned overtime,
it implies that they will be working on both morning and
afternoon shifts. However, it is of the utmost importance to
emphasize that any additional work beyond what is expected of
the nurse should be minimized. The minimization of overtime
hours is part of the objective function of the problem, which
incurs additional costs for the hospital. Therefore, in the
analysis of this problem, we have the morning shift (M), the
afternoon shift (A), and the combination of both in case of
overtime, referred to as (M/A).

In this paper we are solving the NRP with 4 hard and 3
soft constraints, as follows:

• Hard Constraints:
1) Ensure that each employee has a minimum number of

days off within the planning horizon period.
2) Limit a maximum number of consecutive workdays with-

out a day off.
3) Vacations are pre-defined, and there cannot be any shift

assignments during an employee’s vacation period.
4) The employee will carry out their work during the entire

assigned shift period, with the possibility of working
overtime.

• Soft Constraints:
1) A proportion of days off should be assigned on weekends,

with the preference of Sundays.
2) Consider the pre-defined days off for each employee.
3) At each shift for each period of the planning horizon,

there is a minimum number of employees that should be
covered.

In order to adhere to Brazilian labor laws, certain hard
constraints in this study need to be adjusted to specific values.
One such constraint pertains to the maximum number of
consecutive workdays without a rest, which is limited to six
days. Additionally, the determination of the minimum number
of days off within the planning horizon should adhere to the
ratio of 5 days off for every 28 days in the planning period.

B. Greedy Algorithm Description

In this section we describe the main greedy algorithm in
details, along with a variation. To this end, we first describe
the data structures used to perform calculations, followed by
the algorithm mechanics and the structure of the objective
function.

1) Main data structures: For the purpose of organizing
data in a structured manner and optimizing the algorithm’s
processing time, the data has been systematically allocated
into matrices. Three primary matrices are employed: morn-
ing shift, afternoon shift, and vacation matrix. Each of these
matrices is binary in nature and are initialized with zero
values. In all three matrices, rows correspond to nurses while
columns represent days. A value of ‘1’ in the morning shift
and afternoon shift indicates that a nurse is scheduled to
work on a particular day, whereas ‘0’ signifies they are not.
The vacation matrix is utilized to denote when a nurse is on
vacation, indicated by a ‘1’ value within the matrix.

An auxiliary matrix, termed overall matrix, plays a crucial
role in the algorithm’s function. Each primary matrix, specif-
ically morning shift and afternoon shift, is associated with
an overall matrix. Thus, there are two distinct overall matrix
instances: one for the morning shift and another for the
afternoon. Every overall matrix comprises three rows, and its
length is consistent with the planning horizon.

• The first row displays the total number of nurses assigned
on a specific day.

• The second row designates the minimum number of
nurses that should work on the day.

• The third row captures the disparity between the current
staffing and the necessary staffing (difference between
row 1 and 2).

Consequently, positive values in the third row imply a
staffing surplus. A value of 0 denotes the precise staffing
prerequisite has been attained, and negative values highlight
a staffing deficit. As the algorithm operates and nurses are
allocated to their respective shifts, the overall matrices undergo
corresponding updates.

Figure 1 and 2 display a schedule spanning a 14-day
planning horizon for six nurses. In this scenario, Nurses 1,
3 and 5 are allocated to the morning shift (Figure 1), while
Nurses 2, 4 and 6 are designated to the afternoon shift (Figure
2). In this illustrative example, the requisite staffing level
for each day is two nurses. On days when this minimum
staffing threshold is not met, nurses from the alternate shift
are assigned to perform extra shifts. Extra shifts are identified
when a nurse has ’1’ values in both the morning and afternoon
shift matrices.

Nurse 1

Nurse 2

Nurse 3

Nurse 4

Planning horizon

1 2 3 4 5 6 7 8 9 10

Nurse 5

11 12 13 14

Nurse 6

1 1 1 1 1 0 1 1 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

Fig. 1: Morning Matrix - Example

Nurse 1

Nurse 2

Nurse 3

Nurse 4

Planning horizon

1 2 3 4 5 6 7 8 9 10

Nurse 5

11 12 13 14

Nurse 6

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0

0 0 0 0 0 1 1

1

1

Fig. 2: Afternoon Matrix - Example

As illustrated in figure 3, Nurse 6 is the only one scheduled
for leave during the outlined planning period. She has time

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, NOVEMBER 2023 4

off from days 5 to 9, as indicated by a ”1” in the vacation
matrix. As a result, she is available for work only from days
1 to day 4, and from day 10 to day 14. During these days,
she fulfills her responsibilities in the designated shift, which
is the afternoon shift.

Nurse 1

Nurse 2

Nurse 3

Nurse 4

Planning horizon

1 2 3 4 5 6 7 8 9 10

Nurse 5

11 12 13 14

Nurse 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 01 1 1 1 1

Fig. 3: Vacation Matrix - Example

2) Description of the Algorithm: For the scope of this
project, we have chosen the Greedy Algorithm as our primary
method. A greedy solution is built incrementally, starting from
an empty set and selecting optimal moves at each step. We
have added a stochastic component to this template in order to
enable an iterative searching. The pseudo-code for the greedy
procedure is shown in Algorithm 1, whereas the iterative
greedy is displayed by Algorithm 2.

The algorithm assigns each nurse (line 1) to a shift. This
definition is the greedy deterministic component of the method
(defined in the routine DefineShiftPriority(), line 2). The
priority is defined by using the overall matrix: a nurse is
assigned to the shift with the greatest staff shortfall, and at
each iteration a shift is assigned to a nurse. All the nurses are
evaluated sequentially in order, starting from nurse 1 to nurse
n, and their schedules are determined. This process persists
until each nurse’s shift has been allocated.

Algorithm 1 Greedy

1: for (all nurses) do
2: p = DefineShiftPriority()
3: s = GenerateRandomStart()
4: if nurse in VacationNurses() then
5: VacationGreedy(p, nurse)
6: else
7: RandomGreedy(s,p,nurse)
8: end if
9: end for

Nurses with scheduled vacation days during the planning
horizon are treated differently in the scheduling process than
those without any set vacation days. Specifically, for a nurse
with planned vacation – indicated by her presence in the
VacationNurses() function (line 4) – the algorithm employs the
VacationGreedy() function (line 5), which has its own unique
assignment logic.

This process begins by scheduling shifts starting the day
immediately after the nurse’s return from vacation (day 10 in
Figure 4), continuing until the nurse reaches the threshold of

1 1 1 1 1 1 1 1 10 0 0 0 0

Vacation Days

Start of the work count Start of the work count

1234 1 2 3 4 5
Planning horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 4: Shift assigment for a nurse using VacationGreedy() -
Example

the maximum consecutive working days without a break. Sub-
sequently, the algorithm backtracks to allocate shifts counting
backward from the day right before the vacation starts (day 4
in Figure 4). This strategy ensures that the nurse is optimally
scheduled around their vacation, minimizing unnecessary days
off. Once the nurse reaches the defined maximum working
days without a day off value, a day off is scheduled, denoted by
a zero in the shift assignment. This back-and-forth assignment
continues until the start and end points of the planning horizon
are met.

In our investigation, we put forth two distinct versions
of the greedy algorithm. Both versions are intended for the
regular staff, which refers to nurses without vacation plans for
the planning horizon. The first variant, denoted as Random-
Greedy(), operates as follows: After the shift with the most
pressing staffing need is determined by DefineShiftPriority(),
a random number is generated, ranging between 1 and the
total number of days within the planning horizon, from Gen-
erateRandomStart() (line 3 of Algorithm 1). On a randomly
selected day, represented by day 3 in Figure 5, the nurse is
assigned a ”0” value, indicating a day off. Following that, she
starts her work, receiving ”1” values in her schedule until she
hits the maximum working days without a day off value, as
specified by the input data.

1 1 1 1 1 1 1 1

Random day selected

1 2 3 4 5
Planning horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 10 0

6 7 8 9 10 11 1213 14

Fig. 5: Shift assignment for a nurse using RandomGreedy() -
Example

After reaching this threshold of maximum working days
without a day off, set at 5 days for this scenario, a day off
is assigned, symbolized by a “0” value in the matrix. Work
assignment then resumes post this break and continues until
the planning horizon concludes and the days reset. Once a
nurse’s work schedule is completely outlined, the algorithm
revisits and updates the overall matrices from both shifts. It
then assesses whether the morning or afternoon shift has a
more significant staffing requirement.

In the subsequent variant of the algorithm, named Proba-
bilityGreedy(), each day is accorded a percentage based on
the variance in the count of available nurses. If opted to
work with the ProbabilityGreedy(), this would be replacing
the RandomGreedy() in line 7 of the Algorithm 1. Explicitly,
days observing a shortage in nursing staff, denoted by negative

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, NOVEMBER 2023 5

figures, are given percentages in tandem with the depth of the
deficit. A pronounced shortfall is paired with a heightened
percentage, while a lesser one is coupled with a diminished
percentage. Conversely, on days where the staffing level aligns
or exceeds the stipulated threshold, characterized by values of
0 or above, a zero percentage is assigned, marking appropriate
staffing levels. After formulating this percentage distribution,
instrumental to the algorithm’s operation, a number is selected
at random between 0 and 1. As the algorithm aggregates the
percentages from the set, when the sum reaches or surpasses
this random value, the mechanism gets into action to delegate
workers for the designated day.

Planning horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-30 1 0-1 0 0 -2 0 0 1 -1-2-2

3/112/11 2/11 2/111/11 1/110 0 0 0 0 0 0 0

Fig. 6: ProbabilityGreedy() - Example

As shown in Figure 6, the first row provides another
example of discrepancies in nurse staffing, which represents
the difference between the number of allocated and required
nurses for each day in the given iteration. As previously
mentioned, negative values indicate understaffing, zero values
show that staffing needs have been met, and positive values
indicate overstaffing. The second row presents percentages
attributed exclusively to the negative values in the row above.
Each negative value is divided (in absolute terms) by the sum
of all the negative values (also in absolute terms).

Subsequently, a random number between 0 and 1 is gener-
ated. For the purpose of this example, let’s assume the number
0.7 is chosen. In this variant of the algorithm, we begin tallying
the percentages attributed to negative values from left to right.
Once the cumulative sum meets or exceeds the randomly
generated number, the corresponding day is selected to initiate
the nurse shift count.

Cumulative sum =
2

11
+ 0 +

1

11
+ 0 +

2

11
+ 0 +

3

11
(1)

Cumulative sum =
8

11
= 0.7273 (2)

Cumulative sum ≥ 0.7 (3)

In the provided example, the cumulative sum meets or
exceeds the randomly generated number on day 7, indicated
by the red arrow on figure 6. This indicates that the counting
will proceed according to the GreedyAlgorithm(). Once a
nurse’s shift schedule is established, the algorithm updates the
overall matrices and proceeds to analyze the next nurse’s shift
requirements.

Regardless of which of the two algorithms is used, to
ensure that there is no shortage of nursing staff, a specific
mechanism can be employed. This algorithm incorporates
a feature that allocates extra shifts to nurses. The process

operates as follows: On days where there is a deficit, signifying
a disparity between the required and allocated nurses, the
system cross-references the opposite shift to identify available
nurses. Consequently, one of the nurses from the alternate
shift is designated to undertake an additional shift on the day
experiencing a staffing shortfall.

As previously mentioned, the stochastic component of the
greedy algorithm (line 3 of pseudocode 1) provides a possi-
bility to enhance a solution by iterative restarts. This is done
by algorithm 2. We run the greedy procedure k times (line 2),
collecting the best solution (line 5) one at each run.

Algorithm 2 IterativeGreedy
1: t← 1
2: while t ≤ k do
3: Xcurrent = GreedyAlgorithm()
4: if Xcurrent < Xbest then
5: Xbest ← Xcurrent
6: end if
7: t← t+ 1
8: end while

3) Objective Function: The objective function is termed
to penalize soft constraints that were not satisfied. Each soft
constraint is a component of the function, as described below.

1) V1: Total nurses without a Sunday day off.
2) V2: Requested days off not granted.
3) V3: Extra shifts proportion sum.
4) V4: Extra shifts count.
5) V5: Total difference between required and allocated

nurses.

For each component there is a penalty weight, that can
be user-defined to set priorities on the achievement of each
constraint. The significance of a constraint can be modulated
by adjusting its penalty weight, a higher weight emphasizes
its importance, whereas a reduced weight diminishes it. The
objective function’s calculation is outlined by equation 4. It
takes into account penalties P1 through P5, which should be
ranked based on their significance.

min Z = V1 · P1 + V2 · P2 + V3 · P3 + V4 · P4 + V5 · P5 (4)

IV. COMPUTATIONAL RESULTS

In this Section we present the computation results of the
algorithms. We have separated the section in three parts, each
of them designed to analyse the algorithm from a different
perspective: in the first part, we compare the two variants
according to their efficacy in obtaining good quality solutions,
and also their running times. On the second part we determine,
for each algorithm, the number of iterations for which the
objective function stops improving. Finally, on the last part
we check whether the objective function penalty mechanism is
working accordingly (changing the penalty values of Equation
4 directly changes its correspondent value in the objective
function).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, NOVEMBER 2023 6

A. Quality of solutions and computational times

In our study, we’ve designed five test instances to evaluate
the algorithms. The intent behind these designs was to ensure
each instance varied significantly from the others, allowing us
to test the algorithms under various scenarios and constraints.
For example, in the fourth instance, some nurses are on
scheduled vacation, leading to a challenging situation where
staffing levels are insufficient to meet minimum requirements.
This results in the need for many additional shifts. Below we
describe the characteristics of each instance:

1) No nurses on vacation, requiring many additional shifts.
2) No nurses on vacation and no need for extra shifts.
3) Some nurses on vacation with few extra shifts needed.
4) Some nurses on vacation, requiring many extra shifts.
5) Relaxed scenario with ample available nurses.
In order to compare the quality of solutions and compu-

tational times, we ran both algorithms on each of the five
instances 30 times, collecting data on the objective function
value and each algorithm’s processing time. To check whether
there are differences on the values, we have compared the
means using t-student tests.

Results of the p-values and the means are showed in Table
I (for the objective function mean values), and in Table II (for
the running time mean values).

Instances

1 2 3 4 5
p-value 0.946 0.000 0.205 0.685 0.902
Mean random 112.71 105.32 118.16 618.26 181.48
Mean prob. 112.74 102.48 117.87 618.42 181.45

TABLE I: Mean difference of objective values (p-values and
means)

Instances

1 2 3 4 5
p-value 0.000 0.000 0.000 0.044 0.000
Mean random 4.68 5.20 7.42 14.32 6.32
Mean prob. 5.01 5.70 7.90 14.70 6.79

TABLE II: Mean difference of running times (p-values and
means)

As presented in Table I, the hypothesis of equal means
is rejected in only one out of five instances (Instance 2),
with a significance of 5% (p-values of 0.000). This suggests
that, except for one case, there is no statistically significant
difference in the average quality of the solutions produced by
the algorithms across the majority of instances tested.

The time analysis displayed by Table II, however, shows a
different scenario. In 4 out of 5 instances the difference of
the mean values for computational time, supported by the p-
values, indicates that there is in fact a statistical difference
among them, considering also a 5% of significance.

The conclusion so far is that it is more convenient to use
the RandomGreedy(), since there will be no losses on solution
quality, as well as an improve in computational times.

B. Objective function converge

For our study, we’ve illustrated the performance of the
objective function across 1000 solutions in graphical form.
This was done for both the RandomGreedy() and the Proba-
bilityGreedy(). As shown in Figure 7, the x-axis displays the
1000 iterations, indicating the number of times both algorithms
were run. The plotted values correspond to the mean of 10
generated solutions, for each Instance. The y-axis depicts the
best objective function value achieved up to that point in
the iterations. In essence, the previous best solution is only
supplanted by a superior one.

Examination of the graphs reveals that both greedy al-
gorithm variants exhibit rapid enhancement in the objective
function across all five instances initially. In three out of
five instances, ProbabilityGreedy() achieved superior results,
while RandomGreedy() performed better in the remaining two
instances.

For all instances, there is a negligible enhancement in the
objective function beyond the 600th iteration, suggesting a
stabilization of results at this juncture. If efficiency in process-
ing time is a critical factor for the issue being addressed, it
would be judicious to conclude the iterations at a point where
subsequent enhancements to the value of the objective function
become insignificant. This adjustment could serve to curtail
redundant computations in favor of more optimized processing
time.

C. Penalty mechanism

We are also interested in determining whether the penalty
mechanism in the objective function has a statistically signif-
icant effect on satisfying soft constraints. To accomplish this,
we conducted an analysis using factorial ANOVA. For the
same problem instance, we incrementally changed one penalty
value while keeping all others constant. This process was
repeated for three different values across all penalty weights.
For each variation, we ran the algorithm and collected data on
all the components of the objective function. A portion of the
experiment’s results is displayed in Table III.

P1 P2 P3 P4 P5 V1 V2 V3 V4 V5

1 1 1 1 1 5 21 10 78 0
1 1 1 1 1 8 19 4 73 5
1 1 1 1 1 7 19 10 78 0
1 1 1 1 1 4 22 10 78 0
1 1 1 1 1 5 26 4 73 5
1 1 1 1 1 5 21 10 78 0

100 1 1 1 1 1 20 9 79 1
100 1 1 1 1 2 27 9 79 1
100 1 1 1 1 2 28 13 75 3
100 1 1 1 1 3 26 9 79 1
100 1 1 1 1 3 21 9 79 1
100 1 1 1 1 3 25 11 77 1

TABLE III: Factorial ANOVA table

We have conducted five Factorial ANOVA tests, each cor-
responding to a different component of the objective function.
For instance, to evaluate component V1, we used as input
columns P1 through P5 (factor) and only V1 as a response
variable. To evaluate V2 we use the same P1 through P5 as

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, NOVEMBER 2023 7

0 200 400 600 800 1000
Iterations

112

114

116

118

120

122

124
O.

F
Va

lu
es

Instance 1 - Objective Function
x Number of Iterations

Best value (Random Greedy)
Best value (Probability Greedy)

0 200 400 600 800 1000
Iterations

105

110

115

120

125

130

O.
F

Va
lu

es

Instance 2 - Objective Function
x Number of Iterations

Best value (Random Greedy)
Best value (Probability Greedy)

0 200 400 600 800 1000
Iterations

120

125

130

135

140

O.
F

Va
lu

es

Instance 3 - Objective Function
x Number of Iterations

Best value (Random Greedy)
Best value (Probability Greedy)

0 200 400 600 800 1000
Iterations

618

620

622

624

626

628

630

632

634

O.
F

Va
lu

es

Instance 4 - Objective Function
x Number of Iterations

Best value (Random Greedy)
Best value (Probability Greedy)

0 200 400 600 800 1000
Iterations

180

185

190

195

200

O.
F

Va
lu

es

Instance 5 - Objective Function
x Number of Iterations

Best value (Random Greedy)
Best value (Probability Greedy)

Fig. 7: Objective Function x Number of Iterations - Example

factors, but V2 as the response variable. By conducting the tests
in this way, we obtained five sets of results, each providing a
p-value for the various factors. The results of these tests are
presented in IV.

Penalty components

Objective value
components P1 P2 P3 P4 P5

V1 5.69e-12* 0.03047 0.0082 0.0027 0.8173
V2 6.85e-05 3.31e-16* 0.0196 4.29e-06 0.8472
V3 0.3389 0.0398 1.27e-11* 0.0466 0.5985
V4 0.0467 5.02e-09 3.77e-05 < 2e− 16* 0.7642
V5 0.000482 4.91e-06 0.383924 < 2e− 16 0.515270*

TABLE IV: p-values for Factorial ANOVA, penalties and
objective components

We are primarily interested in the diagonal values of Table
IV, as these indicate whether the weight affects the corre-
sponding component of the objective function. For instance,
the first row of Table IV shows a p-value of 5.69e − 12 for
weight V1 and the response variable P1, suggesting that, even
with a significance level of 1%, it influences V1. This pattern
persists, except for the last row, where the weight P5 and
component V5 are considered.

We can therefore conclude that the penalty mechanism is
effective for all weights, except for P5. This behavior might
partly be explained by the type of instance: since the weight
is linked to the shortfall of nurses relative to the minimum
required, if the minimum demand for nurses is so high that
even when assigning all available nurses to extra shifts the
shortfall persists, it becomes impossible to reduce component
P5, regardless of the weight value.

V. CONCLUSIONS

In this study, we introduced two variants of the Greedy
algorithm to tackle the nurse rostering problem (NRP): Ran-
domGreedy(), which introduces a random factor, and Proba-
bilityGreedy(), which incorporates a probabilistic factor. The
primary difference between the two lies in their respective
strategies for determining the starting day for nurse work shift
allocations. Our proposed methodologies take into account
a wide array of hospital constraints—both hard and soft, of
which are integrated into an objective function designed to
assess the efficacy of the scheduling solutions.

To assess the performance of the proposed algorithms, we
employed five distinct instances, each with its own set of
requirements and complexities, in two different tests. One
of the primary evaluations was the t-student test. This test
found no statistically significant differences in the quality of
solutions between the two variants of the Greedy algorithm
in terms of the objective function. However, it was observed
that RandomGreedy() demonstrated enhanced computational
efficiency compared to ProbabilityGreedy().

Furthermore, the ANOVA test indicated that emphasizing
certain components of the objective function—by assigning
them greater weights—can effectively diminish the incidence
of less optimal results.

Conclusively, the application of the Greedy algorithm-based
solutions to the NRP across diverse operational scenarios has
met our initial expectations and is deemed effective. The
algorithm we developed has proven to be a significantly better
approach than manually creating nurse rosters, as it not only
enhances the quality of the work schedules but also results in
substantial time savings.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, NOVEMBER 2023 8

REFERENCES

[1] Johannes Hendrik Oldenkamp. Quality in fives: on the analysis, opera-
tionalizationand application of nursing schedule quality. 1996.

[2] Brenda Cheang, Haibing Li, Andrew Lim, and Brian Rodrigues. Nurse
rosteringproblems—-a bibliographic survey.European journal of opera-
tional research, 151(3):447–460, 2003.

[3] Erfan Rahimian, Kerem Akartunalı, and John Levine. A hybrid integer
programming and variable neighbourhood search algorithm to solve
nurse rostering problems. European Journal of Operational Research,
258(2):411–423, 2017.

[4] Awadallah, M.A.; Bolaji, A.L.; Al-Betar, M.A. A hybrid artificial bee
colony for a nurse rostering problem. Appl. Soft Comput. 2015, 35,
726–739

[5] Burke, E.; De Causmaecker, P.; Berghe, G.V. A hybrid tabu search
algorithm for the nurse rostering problem. In Proceedings of the Asia-
Pacific Conference on Simulated Evolution and Learning, Canberra,
Australia, 24–27 November 1998; pp. 187–194.

[6] Aickelin, U.; Dowsland, K.A. An indirect genetic algorithm for a nurse-
scheduling problem. Comput. Oper. Res. 2004, 31, 761–778.

[7] El-Ghazali Talbi.Metaheuristics: from design to implementation. John
Wiley & Sons, 2009.

[8] Edmund K. Burke, Tim Curtois, New approaches to nurse rostering
benchmark instances, European Journal of Operational Research, Volume
237, Issue 1, 2014.

[9] F. Bellanti, G. Carello, F. Della Croce, R. Tadei, A greedy-based neigh-
borhood search approach to a nurse rostering problem, European Journal
of Operational Research, Volume 153, Issue 1, 2004.

[10] Boovarsdottir, E. B., Smet, P., & Berghe, G. V. (2020). Behind-the-
Scenes Weight Tuning for applied nurse rostering. Operations Research
for Health Care, 26, 100265.

[11] Suk Ho Jin, Ho Yeong Yun, Suk Jae Jeong, and Kyung Sup Kim. Hybrid
andcooperative strategies using harmony search and artificial immune
systems for solvingthe nurse rostering problem.Sustainability, 9(7):1090,
2017.

[12] Lin C.C., Kang J.R., Chiang D.J., Chen C.L. Nurse scheduling with
joint normalized shift and day-off preference satisfaction using a genetic
algorithm with immigrant scheme Int. J. Distrib. Sens. Netw. (2015),
Article 595419

